
 
 
 
 
 

JJoM | Jambura J. Math.                                      87                           Volume 2 | Issue 2 | July 2020 
 

JAMBURA JOURNAL OF MATHEMATICS 
Jambura J. Math. Vol. 2, No. 2, pp. 87-96, July 2020 

Journal Homepage: http://ejurnal.ung.ac.id/index.php/jjom 
DOI: https://doi.org/10.34312/jjom.v2i2.4566 

 

The Influence of Additive Allee Effect and Periodic 
Harvesting to the Dynamics of Leslie-Gower Predator-

Prey Model 
 
Hasan S. Panigoro1*, Emli Rahmi2, Novianita Achmad3, Sri Lestari Mahmud4  

 
1,2,3,4 Department of Mathematics, Faculty of Mathematics and Natural Sciences,  

Universitas Negeri Gorontalo 
Jl. Jenderal Sudirman No. 6, Kota Gorontalo 96128, Gorontalo, Indonesia 

 

* Corresponding Author. Email: hspanigoro@ung.ac.id 
 

ABSTRACT1 

In this paper, the influence of additive Allee effect in prey and periodic harvesting in predator to the 
dynamics of the Leslie-Gower predator-prey model is proposed. We first simplify the model to the non-
dimensional system by scaling the variable and transform the model into an autonomous system. If the 
effect Allee is weak, we have at most two equilibrium points, else if the Allee effect is strong, at most four 
equilibrium points may exist. Furthermore, the behavior of the system around equilibrium points is 
investigated. In the end, we give numerical simulations to support theoretical results. 
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1.  Introduction 

In the past few years, the predator-prey model is studied intensively due to its natural 

capability to describes the existence and extinction of the population caused by the 
interaction between prey and its predator [1]. Several references show that the predator-
prey model is modified to harmonize with an actual condition such as prey refuge [2][3] 
and infectious diseases in the population [4][5]. The popular one is the famous Leslie-
Gower predator-prey model [6] which is defined as follows. 

 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑝𝑥𝑦,

𝑑𝑦

𝑑𝑡
= 𝑠𝑦 (1 −

𝑦

𝑛𝑥
) ,

 (1) 

where 𝑥(𝑡) > 0 and 𝑦(𝑡) ≥ 0 are the density of prey and predator, respectively. Both 
populations are growth logistically where the carrying capacity of predator depends on 
the density of predator. For further, the biological interpretation of parameters is defined 
in Table 1.  
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One interesting phenomenon in ecological modeling is the Allee effect, which represents 

the decrease in per capita fertility rate as a result of several mechanisms such as low-
density population, intraspecific competition, and difficulties in finding mates [7][8]. 
Several researchers using different definitions to represents the Allee effect in a predator-
prey model such as multiplicative Allee effect [9][10], additive Allee effect [11]–[13], and 
double Allee effect [14][15]. Particularly, we are interested to study the Allee effect 
deduced in [16]–[19] which consider the natural growth function given by 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
−

𝑚𝑥

𝑥 + 𝑏
), (2) 

which called additive allee effect. The density of a population is decreased which is 

shown by the presence of the Allee effect function 𝑓(𝑥) =
𝑚𝑥

𝑥+𝑏
 in the logistic growth 

model. We applied the additive Allee effect to the prey in the system (1) and obtain the 
following system. 

 

𝑑𝑥

𝑑𝑡
= [𝑟 (1 −

𝑥

𝐾
) −

𝑚

𝑥 + 𝑏
] 𝑥 − 𝑝𝑥𝑦,

𝑑𝑦

𝑑𝑡
= 𝑠𝑦 (1 −

𝑦

𝑛𝑥
) ,

 (3) 

where the Allee parameters 𝑚 and 𝑏 have the following biological interpretation. 

1. The weak Allee effect if 0 < 𝑚 < 𝑏, and 
2. The strong Allee effect if 𝑚 > 𝑏. 

Table 1. Biological interpretation of system (1) 

Parameters Biological interpretation 

𝑟 The intrinsic growth rate of prey 

𝑠 The intrinsic growth rate of predator 

𝐾 The environmental carrying capacity of prey 

𝑝 The maximal predator per capita consumption 

rate 𝑛 The measure of the quality of food 

Source: [11][20] 

Apart from the Allee effect, one that caused a decrease in population density is the 

exploitation of the population through harvesting. In some conditions, the harvesting is 
done periodically due to seasonal activities such as hunting season, migration of 
population, weather, and so on. This periodically harvesting means that the harvesting 
is still exists as 𝑡 → ∞, but the harvesting rate changes periodically and also proportional 
to the density of predator. We replace the conventional proportional effort harvesting 

𝐻(𝑦) = ℎ𝑦𝑦 with a harvesting periodic function 𝐻(𝑦) = (1 + 𝜀 sin(𝑤𝑡))ℎ𝑦𝑦. By using this 

assumption, the system (3) is transformed into a non-autonomous system as follows. 

 

𝑑𝑥

𝑑𝑡
= [𝑟 (1 −

𝑥

𝐾
) −

𝑚

𝑥 + 𝑏
] 𝑥 − 𝑝𝑥𝑦,

𝑑𝑦

𝑑𝑡
= 𝑠𝑦 (1 −

𝑦

𝑛𝑥
) − (1 + 𝜀 sin(𝑤𝑡))ℎ𝑦𝑦,

 (4) 
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where ℎ𝑦 is harvesting parameter, 0 < 𝜀 < 1 is harvesting constant, and 𝑤 is the period 

parameter. The harvesting function is periodically changed in (0, ℎ]. Studying the 
dynamics of the system (4) is the main topic in our works. 

This paper is organized as follows: In Section 2, we give the methods used in our 
research. In Section 3, all of our research results are presented and discussed. Finally, the 
conclusion of our research is given in Section 4. 

2.  Methods 

The dynamics of the system (4) is investigated and presented using several methods as 
follows. 

1. Transforming system (4) to an autonomous non-dimensional system by scaling the 
variable and expanding the dimension of system. 

2. Identifying the existence of equilibrium points and their local stability of the 
autonomous system for both strong and weak Allee effect. 

3. Plotting the numerical solutions of the model to support the theoretical results by 

using 4𝑡ℎ-order Runge-Kutta schemes. 

3.  Results and Discussion  

3.1.  Non-dimensional System  

We first simplify system (4) to a non-autonomous non-dimensional system by applying 

variable scaling (𝑥, 𝑦, 𝑡) → (𝑥/𝐾, 𝑦/𝑛𝐾, 𝑟𝑡) and obtain 

 

𝑑𝑥

𝑑𝑡
= [1 − 𝑥 −

𝛼

𝑥 + 𝛽
− 𝜅𝑦] 𝑥,

𝑑𝑦

𝑑𝑡
= [𝛿 (1 −

𝑦

𝑥
) − (1 + 𝜀 sin(𝜔𝑡))ℎ] 𝑦,

 (5) 

where α = 𝑚/𝑟𝐾, η = 𝑏/𝐾, δ = 𝑠/𝑟, κ = 𝑛𝑝𝐾/𝑟, ω = 𝑤/𝑟 and ℎ = ℎ𝑦/𝑟. These methods 

guarantee that the number of parameters is reduced and the dynamics of system (5) are 
qualitatively similar to the system (4). We can easily check that the prey has a weak Allee 
effect  if 0 < α < β and strong Allee effect if α > β. 

3.2.  Autonomous System  

Although system (5) is simpler than system (4), the dynamics of the system (5) is still 

difficult to investigate due to its dependency on time 𝑡 explicitly which is called a non-
autonomous system. In this part, we show the way to transform the non-autonomous 
system (5) to an autonomous system. Suppose that 

 

𝑑𝑢

𝑑𝑡
= −𝑢 + 𝜔𝑣 + 𝑢(𝑢2 + 𝑣2),

𝑑𝑣

𝑑𝑡
= −𝜔𝑢 − 𝑣 + 𝑣(𝑢2 + 𝑣2).

 (6) 

It can easily prove that the system (6) has solution 𝑢(𝑡) = sin(ω𝑡) and 𝑣(𝑡) = cos(ω𝑡). By 
utilizing the system (6), we have an autonomous form of system (5) as follows. 
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𝑑𝑥

𝑑𝑡
= [1 − 𝑥 −

𝛼

𝑥 + 𝛽
− 𝜅𝑦]𝑥,

𝑑𝑦

𝑑𝑡
= [𝛿 (1 −

𝑦

𝑥
) − (1 + 𝜀𝑢)ℎ] 𝑦,

𝑑𝑢

𝑑𝑡
= −𝑢 + 𝜔𝑣 + 𝑢(𝑢2 + 𝑣2),

𝑑𝑣

𝑑𝑡
= −𝜔𝑢 − 𝑣 + 𝑣(𝑢2 + 𝑣2).

 (7) 

From the biological point of view, the solution of system (7) must satisfying  

ℝ+
4 ≔ {(𝑥, 𝑦, 𝑢, 𝑣): 𝑥 > 0, 𝑦 ≥ 0, 𝑥, 𝑦, 𝑢, 𝑣 ∈ ℝ}. 

3.3.  Existence of Equilibrium Point  

In this part, we obtain the equilibrium point of system (7) by solving 

 

[1 − 𝑥 −
𝛼

𝑥 + 𝛽
− 𝜅𝑦] 𝑥 = 0,

[𝛿 (1 −
𝑦

𝑥
) − (1 + 𝜀𝑢)ℎ] 𝑦 = 0,

−𝑢 + 𝜔𝑣 + 𝑢(𝑢2 + 𝑣2) = 0,

−𝜔𝑢 − 𝑣 + 𝑣(𝑢2 + 𝑣2) = 0.

 (8) 

Notice that 𝑢(𝑡) and 𝑣(𝑡) are fulfilled eq. (8) if (𝑢, 𝑣) = (0,0) or 𝑢2 + 𝑣2 = 1. In our work, 
we focus on studying the dynamics when (𝑢, 𝑣) = (0,0). Therefore, we obtain the 
following equilibrium points. 

1. The predator extinction points 𝐸̂1,2 = (𝑥1,2, 0,0,0) where 𝑥1,2 are solutions of 

quadratic polynomial 

 𝑥2 − (1 − 𝛽)𝑥 + 𝛼 − 𝛽 = 0. (9) 

By solving eq. (9), we obtain 

 𝑥1 =
1 − 𝛽

2
+ √(

𝛽 + 1

2
)

2

− 𝛼, 𝑥2 =
1 − 𝛽

2
− √(

𝛽 + 1

2
)
2

− 𝛼. 

 

(10) 

Notice that both equilibrium points may exist if 𝛼 < (
𝛽+1

2
)
2
. When the Allee effect is 

weak, the predator extinction point 𝐸̂1 is the only possible equilibrium point that 

appears. When the Allee effect is strong, both predator extinction point 𝐸̂1,2 are exist 

if 0 < 𝛽 < 1. 

2. The co-existence point 𝐸1,2
∗ = (𝑥1,2

∗ , (1 −
ℎ

𝛿
) 𝑥1,2

∗ , 0,0) where 𝑥1,2
∗  are solutions of 

quadratic polynomial 

 𝑥2 − 𝜉1𝑥 + 𝜉2 = 0, 𝜉1 = 𝛽 −
𝛿

𝛿 + (𝛿 − ℎ)𝜅
, 𝜉2 =

(𝛼 − 𝛽)𝛿

𝛿 + (𝛿 − ℎ)𝜅
. (11) 

Thus, we have 
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𝑥1

∗ = −
1

2
(𝜉1 − √𝜉1

2 − 4𝜉2) , 𝑥2
∗ = −

1

2
(𝜉1 + √𝜉1

2 − 4𝜉2) . 
(12) 

Both equilibrium points are exist if ℎ < 𝛿 and 𝑥1,2
∗ > 0. Making use eq. (12), we have 

𝑥1,2
∗ ∈ ℝ if 𝜉1

2 > 4𝜉2. When the Allee effect is weak, 𝐸1
∗ is the only equilibrium point 

in interior. If the Allee effect is strong, 𝐸1,2
∗  are exist in interior of system (7). 

Therefore, we have at most two equilibrium points for weak Allee effect and four 

equilibrium points for a strong Allee effect. Next, the local stability of those equilibrium 
points is investigated. 

3.4.  Stability of Equilibrium Point  

In this part, we present the local stability of equilibrium point both strong and weak 
Allee effect. To investigate the dynamics around an equilibrium point, we identify the 
Jacobian matrix as follows. 

 
𝐽(𝑥, 𝑦, 𝑢, 𝑣) =

[
 
 
 
 
𝜂1 −𝜅𝑥 0 0

𝛿𝑦2

𝑥2 𝜂2 −𝜀ℎ𝑦 0

0 0 𝜂3 𝜂4

0 0 𝜂5 𝜂6]
 
 
 
 

, 
(13) 

where 

 

𝜂1 = 1 − 2𝑥 −
𝛼

𝑥 + 𝛽
+

𝛼𝑥

(𝑥 + 𝛽)2 − 𝜅𝑦, 𝜂4 = 2𝑢𝑣 + 𝜔,

𝜂2 = 𝛿 (1 −
𝑦

𝑥
) −

𝛿𝑦

𝑥
− (𝜀𝑢 + 1)ℎ, 𝜂5 = 2𝑢𝑣 − 𝜔,

𝜂3 = 3𝑢2 + 𝑣2 − 1, 𝜂6 = 𝑢2 + 3𝑣2 − 1.

 (14) 

Theorem 1.  The predator extinction point 𝐸̂1 is locally asymptotically stable if  ℎ > 𝛿. 

Proof. By replacing (𝑥, 𝑦, 𝑢, 𝑣) in eq. (13) with 𝐸̂1, the Jacobian matrix (13) becomes 

 𝐽(𝐸̂1) =

[
 
 
 
 

𝛼𝑥1

(𝑥1 + 𝛽)2 − 𝑥1 −𝜅𝑥1 0 0

0 𝛿 − ℎ 0 0
0 0 −1 𝜔
0 0 −𝜔 −1]

 
 
 
 

, (15) 

and gives the eigenvalues as follows: 𝜆1 =
𝛼𝑥̂1

(𝑥̂1+𝛽)2
− 𝑥1, 𝜆2 = 𝛿 − ℎ, and 𝜆3,4 = −1 ± 𝜔𝑖. 

It is easily confirmed that 𝜆2 < 0 when ℎ > 𝛿. It is also clear that 𝑅𝑒(𝜆3,4) < 0. Thus, the 

stability of 𝐸̂1 depend on the sign of 𝜆1. By substituting the value of 𝑥1 and making use 

of the existence condition of 𝐸̂1, the sign of 𝜆1 is definitely negative. Furthermore, 𝐸̂1 is 
locally asymptotically stable and Theorem 1 is completely proven. ■ 

Remark. We have shown that if 𝐸̂1 is locally asymptotically stable then 𝐸1,2
∗  are not exists. 

Theorem 2.  The predator extinction point 𝐸̂2 is always a saddle point. 

Proof. System (7) has a quite similar Jacobian matrix to eq. (15). Thus we have 

eigenvalues 𝜆1 =
𝛼𝑥̂2

(𝑥̂2+𝛽)2
− 𝑥2, 𝜆2 = 𝛿 − ℎ, and 𝜆3,4 = −1 ± 𝜔𝑖.  Therefore, the stability of 
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𝐸̂2 depend on 𝜆1. By considering the existence condition and strong Allee effect 
condition, we obtain that 𝜆1 is always positive. Thus, we always at most one positive 

eigenvalue and two eigenvalue satisfying 𝑅𝑒(𝜆) < 0 and hence 𝐸̂2 is always a saddle 
point.  ■ 

Theorem 3. Suppose that 

𝜑1,2 = (
𝛼

(𝑥1,2
∗ + 𝛽)

2 − 1)𝑥1,2
∗ − (𝜅𝑥1,2

∗ + 𝛿)(1 −
ℎ

𝛿
)

𝜙1,2 = [2 (1 −
ℎ

𝛿
) 𝜅 −

𝛼

(𝑥1,2
∗ + 𝛽)

2 + 1] (1 −
ℎ

𝛿
) 𝛿𝑥1,2

∗

 

The co-existence point 𝐸1
∗ and 𝐸2

∗ are locally asymptotically stable if 𝜑1 < 0 and 𝜙1 > 0; and 
𝜑2 < 0 and 𝜙2 > 0, respectively. 

 

Proof.  Firstly. We identify the stability of 𝐸1
∗. By substituting 𝐸1

∗ to eq. (13), we achieve 

𝐽(𝐸̂1) =

[
 
 
 
 
 
 

𝛼𝑥1
∗

(𝑥1
∗ + 𝛽)2 − 𝜅 (1 −

ℎ

𝛿
)𝑥1

∗ − 𝑥1
∗ −𝜅𝑥1

∗ 0 0

𝛿 (1 −
ℎ

𝛿
)
2

−𝛿 (1 −
ℎ

𝛿
) −𝜀ℎ (1 −

ℎ

𝛿
) 𝑥1

∗ 0

0 0 −1 𝜔
0 0 −𝜔 −1]

 
 
 
 
 
 

.   

Therefore, we have the eigenvalues as follows: 

 𝜆1,2 =
1

2
(𝜑1 ± √𝜑1

2 − 4𝜙1) ,

𝜆3,4 = −1 ± 𝜔𝑖.

  

Thus, according to the trace-determinant theorem, 𝐸1
∗ is locally asymptotically stable if 

𝜑1 < 0 and 𝜙1 > 0. Using the similar manner, the stability condition of 𝐸2
∗ is also proven.  

 ■ 

 
Figure 1.  The existence regions of equilibrium points 

3.5.  Numerical Simulations  

In this part, the numerical simulations of the system (7) are illustrated. We give some 
flow of solutions to demonstrate the stability around the equilibrium points that 



 
 

The Influence of Additive Allee Effect and Periodic Harvesting … 

JJoM | Jambura J. Math.                                   93                            Volume 2 | Issue 2 | July 2020 

associate with the previous theoretical results. We apply 4𝑡ℎ-order Runge Kutta schemes 
as the numerical methods with stepsize Δ𝑡 = 0.01. For the sake of simulation needs, we 
use hypothetical parameter values due to the absence of field data.  

We first set some parameter values as follows, 

 𝜅 = 0.3,   𝛿 = 0.4,   𝜀 = 0.1,   𝜔 = 0.05. (16) 

By setting the parameter values as in eq. (16) and fixing ℎ = 0.2, we plot the existence 
regions of equilibrium points as in fig. 1. Take a look at the region (a) in fig. 1. Based on 
the existing condition above, this circumstance is done when the Allee effect is strong. 
We have that all equilibrium points do not exists. Now, we choose a point in the region 

(b) i.e (𝛼, 𝛽) = (0.4,0.3). We obtain two equilibrium points 𝐸̂1 = (0.5,0) and 𝐸̂2 = (0.2,0) 
which are also occur in a strong Allee effect. Based on Theorem 1-2, Both equilibrium 
points are not stable, see fig. 2.  

 
Figure 2.   The flow of solutions of system (7) with parameter values as in eq. (16) 

and 𝛼 = 0.4, 𝛽 = 0.3, ℎ = 0.1 

Now, we increase ℎ to 0.5 so that ℎ > 𝛿 is satisfied. According to Theorem 1, 𝐸̂1 = (0.5,0) 
change its sign from a saddle point to a locally asymptotically stable point.  Thus, we 
have a saddle point and a locally asymptotically stable point. The flow of solutions is 
shown in fig. 3.  

 

Figure 3.   The flow of solutions of system (7) with parameter values as in eq. (16) 
and 𝛼 = 0.4, 𝛽 = 0.3, ℎ = 0.5 
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Furthermore, we replace the values of 𝛼 and 𝛽 with a point as in in fig. 1 region (c) which is 

defined by (𝛼, 𝛽) = (0.2,0.1). This circumstance also describes the dynamics of the system 
(7) when the Allee effect is strong. By utilizing the existing conditions along with stability 
conditions in Theorem 1-3, system (7) has four equilibrium points viz. three saddle points 

𝐸̂1 = (0.7702,0), 𝐸̂2 = (0.1298,0) and 𝐸2
∗ = (0.1422,0.1066); and a locally asymptotically 

stable 𝐸1
∗ = (0.5741,0.4306). The flow of solutions of this condition is shown in fig. 4. 

 
Figure 4.   The flow of solutions of system (7) with parameter values as in eq. (16) 

and 𝛼 = 0.2, 𝛽 = 0.1, ℎ = 0.1 

Finally, the numerical solution of system (7) when the Allee effect is weak is 
demonstrated. The parameter values are set as in eq. (16) by fixing ℎ = 0.1. By choosing 
a point in fig. 1 region (d) i.e (𝛼, 𝛽) = (0.4,0.7), we have two equilibrium points viz. a 

saddle point 𝐸̂1 = (0.7179,0) and a locally asymptotically stable point 𝐸1
∗ =

(0.5564,0.4173). The flow of solutions is given in fig. 5. 

 
Figure 4.   The flow of solutions of system (7) with parameter values as in eq. (16) 

and 𝛼 = 0.4, 𝛽 = 0.7, ℎ = 0.1 

4.  Conclusion 

We have shown the dynamics of the system (7), especially the behavior of solutions 
around the equilibrium points. We present the way to transform a non-autonomous 
system to an autonomous system. Although the system has a higher dimension, we have 
another effort that the dynamics become easier to investigate. We have completely 
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presented that system (7) has at most four equilibrium points when the Allee effect is 
strong, and two equilibrium points for the weak Allee effect. The dynamics around the 
equilibrium point also investigated appropriately. At the end of our works, we 
demonstrate some phase portraits that associated to the theoretical results. One 
interesting issue that was not discussed in our work is dynamics around the limit-cycle 
𝑢2 + 𝑣2 = 1. We also don’t examine the existence of bifurcation although the indication 
appears such as the change of equilibrium numbers when a parameter is varied (the 
occurrence of saddle-node bifurcation) and the existence of non-hyperbolic equilibrium 
point. Some little important works also were not discussed such as the existence, 
uniqueness and permanence of solution, and the global stability of equilibrium points. 
Hopefully, we can finish the rest of it. 
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